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ABSTRACT. Many problems from science and engineering require the computation of
a rank-revealing QR factorization of a matrix. We have developed a new algorithm based on
Chandrasekaran and Ipsen’s algorithm, with two advantages over it: First, our algorithm is
much faster since we modify the main loop to accelerate its convergence and avoid the useless
steps. Second, we apply a technique, suggested by Pan and Tang, that ensures termination,
achieves the desired bounds, and fits into our theoretical studies.
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1 Introduction

The rank-revealing QR factorization (RRQR factorization) is a valuable tool
in numerical linear algebra because it detects the numerical rank of a matrix
and because it provides the information needed about the rank and numerical
nullspace to solve many rank-deficient linear least-squares problems. The RRQR
factorization takes advantage of the efficiency and simplicity of the QR factor-
ization, yet it produces information that is almost as reliable as that computed
by means of the more expensive singular value decomposition.

We briefly summarize the properties of a rank-revealing QR factorization.
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Let A be an m x n matrix A (w.l.o.g. m > n) with singular values
oy >0y > ... >0, >0, (1)
and define the numerical rank r of A with respect to the threshold 7 as follows:
Or >T 2 0rt1.

Also, let A have a QR factorization of the form
_ _ Ry1 R
AP_QR—Q< 0 RZZ), (2)

where P 1s a permutation matrix, ) has orthonormal columns, R is upper tri-
angular, and Rj; is of order r. Further, let x(A) denote the two-norm condition
number of a matrix A. We then say that (2) is an RRQR factorization of A if
the following properties are satisfied:

K?(Rll) ~ 0'1/0'7- and ||R22||2 = Umax(RZZ) X Op41- (3)

Whenever a well-determined gap exists in the singular value spectrum between
o, and o,41, and hence the numerical rank r is well defined, the RRQR factor-
ization (2) reveals the numerical rank of A by consisting of a well-conditioned
leading submatrix Ry; and a trailing submatrix Rss of small norm.

A list of problems where the RRQR factorization can be applied, as well as
a a complete overview of the classical algorithms for computing it, can be found
in [8]. Here we will focus on the most recent studies.

In 1992 Hong and Pan proved that an optimal RRQR factorization is able
to produce estimates of two consecutive singular values that are accurate up to
a factor proportional to the matrix size [23]. This result is important because
it shows that the RRQR may reliably reveal the numerical rank of any matrix.
Unfortunately, Hong and Pan did not present a method for constructing such a
factorization.

Shortly thereafter, two theoretic approximations were developed: the first
by Chandrasekaran and Ipsen [14], the second one by Pan and Tang [24]. The
main inconvenience of the former is its seriality, whereas the latter shows a
higher degree of parallelism. On the other hand, Chandrasekaran and Ipsen’s
algorithm reaches tighter bounds than does the algorithm of Pan and Tang.

Specifically, Chandrasekaran and Ipsen proved that their algorithm halts and
achieves the following bounds:

, or(A)
Omin(R11) > \/m,
rax(Ra2) < oun (AVET T ),

where A € R™*" is the studied matrix and k is an integer value such that
1 <k < n. In their experimental analysis, however, Chandrasekaran and Ipsen



found some termination problem caused by round-off arithmetic. That is, for
some matrix types and sizes, the algorithm loops indefinitely and never halts.
To solve this termination problem, Chandrasekaran and Ipsen proposed a solu-
tion based on a modification of the pivoting technique. The original pivoting
technique assigns to each column a weight and then pivots the column with
largest weight to the current position. The modified technique pivots the col-
umn with largest weight only if its weight is larger than the weight of the current
column plus a constant. The proposed value for the constant is n?¢, where ¢ is
the computer precision.

Pan and Tang used a different method to solve the termination problem.
They proved that their most efficient algorithm, Algorithm 3 (reverse cyclic
pivoting), achieves the following bounds:

. S S
Omin(R11) > NCETES)) k(A),
Tmax(Ra2) (k+ 11,)(71 — k) or+1(A),

where f is a tolerance parameter such that 0 < f < 1/+/k + 1. They also added
a parameter M to take into account the errors introduced by the estimators.
However, in practice since these are accurate, we have excluded that value.

We present here a variant of Chandrasekaran and Ipsen’s algorithm that
implements Pan and Tang’s method for solving the termination problem. Our
algorithm is faster than Chandrasekaran and Ipsen’s [14], halts, achieves the
desired bounds, and fits into our theoretical studies.

This paper 1s structured as follows. In Section 2, we review the original
algorithm of Chandrasekaran and Ipsen and then present our new algorithm.
In Section 3, we analyze the new algorithm theoretically. Finally, in Section 4,
we summarize our results.

2 Algorithms with Guaranteed Termination

We start by briefly describing Chandrasekaran and Ipsen’s algorithm, called
Hybrid-TIT (see Figure 1). Figures 2 and 3 present two subalgorithms, Golub-I
and Stewart-11, used by Hybrid-III. The former subalgorithm is based on the
QR factorization with column pivoting [10]. The latter is based on Gragg and
Stewart’s algorithm [19]. Chandrasekaran and Ipsen proposed in their work
the use of suffix -1 for those algorithms that work on the lower right blocks of
R, and suffix -II for those that work on the upper left block. The suffix -II1
is added to the algorithms that generate an RRQR and, therefore, work on
the whole matrix. Both the Golub-I and Stewart-II subalgorithms carry out a
unique permutation: the first one is restricted to block R(k:n,k:n), the second

to block R(1:k,1: k).



Algorithm Hybrid-TT1(k)
repeat
repeat
Golub-I(k)
Stewart-I1(k)
until there are no more permutations.
repeat
Golub-I(k+1)
Stewart-TT(k+1)
until there are no more permutations.

until there are no more permutations.
End Algorithm

Figure 1: Original Hybrid-IIT algorithm of Chandrasekaran Ipsen

Algorithm Golub-I(k)

1. Find the smallest index 7, k¥ < j < n, such that
IR (k: 4, )lle = maxecrn |[R(k: i, )

2. if (j > k) then

3. Pivot column j to position k.
4. Retriangularize the matrix from the left with orthogonal transformations.
5. end if

End Algorithm

Figure 2: Golub-I subalgorithm

Algorithm Stewart-I1(k)
1. Find the largest index j, 1 < j < k, such that

||e]»T(R(1: kE,1ik) Y = maxi <;< lleF (R(1:k,1:k))™Y|2.
2. if (j < k) then

3. Pivot column j to position k.
4. Retriangularize the matrix from the left with orthogonal transformations.
5. end if

End Algorithm

Figure 3: Stewart-II subalgorithm



Algorithm Hybrid(GC)-TTI-sf(f k)
repeat
Golub-T-sf(f k+1)
Golub-TI-sf(f k)
Chan-TI-sf(f k)
Chan-TI-sf(f k+1)
until there are no more permutations.
End Algorithm

Figure 4: New algorithm Hybrid(GC)-ITT-sf

Since the technique used to solve the termination problem by Chandrasekaran
and Ipsen was not included in their theoretical study, the effect on the reached
bounds is unknown. Moreover, since it is based on a fixed value, independent
from the matrix norm, it may be too small or large for some matrices.

We present in this paper a better solution to the termination problem, which
is also included in our theoretical study. Specifically, we have solved the termi-
nation problem by means of a technique similar to that of Pan and Tang [24].
The solution 1s based on the use of a tolerance parameter f, 0 < f < 1. The
pivoting technique of the subalgorithms (Golub-I, etc.) assigns a weight to each
column and then selects that column having the greatest weight as the pivot
column. Our new pivoting technique consists of pivoting the heaviest column
only if its weight scaled by the parameter f is larger than the weight of the
current column.

Figures 4, 5, and 6 respectively present the new algorithm Hybrid-ITI(GC)-sf
and its subalgorithms Golub-I-sf and Chan-II-sf. The new algorithm satisfies
the following bounds (to be proved shortly):

. .
Omin(R11) > NCCETES)) k(A),
Tmax(Ra2) (b + ;yn — k) or+1(A),

where f is a threshold interval such that 0 < f < 1. This value is better than
that of Pan and Tang (0 < f < 1/vk 4 1) because it allows tighter bounds.
Pan and Tang’s algorithms as well as our new algorithm solve the termination
problem. If the value of the parameter f is very small, the gap between the
singular values is reduced, and the algorithm may fail to reveal the rank. On
the other hand, a large value of f (f = 1 or very close to it) though adequate
to reveal the rank, may produce termination problems. Pan and Tang propose



Algorithm Golub-I-sf(f k)
1. Find the smallest index 7, k¥ < j < n, such that
1R (k: . |2 = mase<ico 1Rk, D)2
2.3 (f -||R(k: , /l2 >| R(k,k) ) then
3 Move column j to position k.
4. Retriangularize the matrix from the left with orthogonal transformations.
5. end if
End Algorithm

Figure 5: “f-factor” variant of Golub-I subalgorithm

Algorithm Chan-TI-sf(f k)

1. Estimate the right singular vector associated with the smallest singular value of
R(1:k,1: k). Store it in v.

2.4 (f- | v; | >| v |) then

3 Pivot column j to position k.

4. Retriangularize the matrix from the left with orthogonal transformations.

5. end if

End Algorithm

Figure 6: “f-factor” variant of Chan-II subalgorithm



in their work the value f = 0.65, which seems to balance both situations.
Our new algorithm is faster than Hybrid-IIT because of the application of
the following two techniques:

Use of Estimators: Stewart-II requires the computation of the inverse of an
r X r upper triangular matrix, where 7 1s the numerical rank. Since this
process is very expensive (cubic), we use the subalgorithm Chan-IT, which
can be efficiently implemented if estimators are used. Specifically, we use
the incremental condition estimator developed by Bischof [7], thus ob-
taining a quadratic cost, much smaller than the former. In theory, the
substitution of Chan-II allows the possibility of a failure in the RRQR,
that is, the rank will be revealed only if the estimates are accurate. Nev-
ertheless, in practice, these estimators work correctly; indeed, for some of
them, no matrix appears to make them fail.

Main-Loop Reorganization: The main loop of our new algorithm, clearly
different from Chandrasekaran and Ipsen’s algorithm, gives a faster con-
vergence rate by avoiding the final steps that do not improve the column
ordering.

Recently, Bischof and Quintana [8, 25] developed and implemented a new
block algorithm for computing the RRQR factorization based on our method.
Their experimental study, carried out on platforms including the IBM RS/6000-
370, DEC AXP 6000-300, SGI R8000, HP 9000/715, and SUN hypersparc, has
shown that the new algorithm based on our method is up to two or three times
faster than the traditional QR factorization with column pivoting.

3 Theoretical Analysis of the New Algorithm

Next, we analyze the correctness of the new algorithm. First, we prove that
it satisfies the desired bounds. Then, we prove that it halts.

Let k& be an integer value 1 < k < n, let f be a value 0 < f < 1, and
let R € R™ " be a matrix such that ox(R) > 0 and MII = QR for some
permutation matrix II € R™"*" and M € R”™*". Then algorithm Hybrid(GC)-
TTT-sf(f k) achieves the following bounds:

| P
Omin(R11) > CETET) ¥(M),
Omax(fl22) < u +2(n — k)0k+1(M) .

3.1 Background

Here we present some properties and a proposition required for the theo-
retical analysis. We present the proof only of the last proposition because the
demonstration of the properties is widely-known.



Property 1 Let A be an m x n matriz and n(A) = maxi<j<pn ||Aej|lo. Then,

7(A) < Tmax(A4) < Vnn(A).

Property 2 Consider a nonsingular nxn matriz A, and define 7(A) = 1/ maxi<i<n lleX A=1|2.
Then,
7(4)

NG

Property 3 Let M1l = QR be the QR factorization of matriz M multiplied by
some permutation matriz 11. Let Ry be the k x k upper left block of R, and let
Ry be the (k+1) x (k+ 1) upper left block of R. Then the following properties

relate the singular values:

< omin(A) < 7(A).

or(M)
op1(M)

Z Umin(Rll)
Z Umin(R11)~
Property 4 Let M1l = QR be the QR factorization of matriz M multiplied by
a permutation matriz I1. Let Roy be the (n — k) x (n — k) lower right block of
R, and let Ras be the (n—k+ 1) x (n—k + 1) lower right block of R. Then the

following properties relate the singular values:

op1(M)
or(M)

Umax(RZZ)

<
S Umax(R22)~

Proposition 5 Let A be an m x n matriz, and let x € R satisfy ||z||z2 = 1
and ||Az||s = e. Consider a permutation matriz Il such that y = Iz satisfies
|y | > lYllee, 0 < f < 1. Then, if ATl = QR is the QR factorization of
matriz All,

vn

|rnn |§ — ¢

Proof. Since 'z = y, |lyll2 = ||z]]2 = 1. A well-known inequality between

norms is ||yl]2 < v7l|ylleo-
From the hypothesis of the proposition, it is satisfied that | y, | > f/+/n.
On the other hand, it 1s possible to show that

QT Az = QT ANN ¢ = Ry = ( 5 ) .
rnnyn
Therefore,

e = [|Azll2 = [|QT Axlla = | Ryll2 2| rnntin | 2] 7an |

S
\/ﬁ’



and the desired result is obtained

NG

| 7on | < T

QED.

3.2 Desired Bounds

Let k& be an integer value 1 < k < n, let f be a value 0 < f < 1, and
let R € R™ " be a matrix such that ox(R) > 0 and MII = QR for some
permutation matrix II € R™"*" and M € R”™*". Then algorithm Hybrid(GC)-
TTT-sf(f k) achieves the following bounds:

| L,
Omin(R11) > \/m w(M)
Omax(fl22) < u ‘1‘]1:2(71 — k)0k+1(M) .

Proof. First we briefly describe the notation that will be used in the demon-
stration. The upper triangular matrix R is partitioned as follows:

(4 8)=(* 2)-(* )
o c ) c ) c J’
where Ais (k—1)x (k—1),Cis(n—k+1)x (n—k+1), A= Ry is k x k,
C = Rogis (n—k)x (n—k), Ais (k+1)x (k+1), and C'is (n—k—1)x (n—k—1).

Next we prove that the algorithm reaches the preceding bounds whenever
it halts. In such cases, 1t is obvious that there are no permutations in any of
the four subalgorithms. Let’s check what bounds are achieved if there are no
permutations.

First, Golub-I-sf(f,k+1) is analyzed. If it does not permute any column, then
ICerll2 > flICe; 2,1 < j < n— k.

Therefore,

| o1 k41 | = ||Cenll2 > flslglsanx_k||cez||2~

Applying property 1 to matrix C, we obtain
Umax(c) < vn —k max ||C€i||2,
1<i<n—k

and combining both expressions we have

Omax(C) nf— k | 7h41 541 | - (4)

IN




~ Second, G91ub—I—sf(f,k) is analyzed. If it does not permute any column, then
[Cerlla > fllCejlla, 1< <n—k+1L
Therefore,

e | = NCerlla 2 £ |_max,__ [[Cerle

Applying property 1 to matrix C, we obtain

T C) S VIR AT _max [ Cells,

i<n—k+1
and combining both expressions we have

vn—k+1
f

Third, algorithm Chan-II-sf(f k) is analyzed. If it does not permute any
column, from proposition b the following condition is satisfied

vk
7
If this expression is combined with the inequality (5), the following is ob-

tained: Y-
G /
——Omin(A4) > Z —
g 2l |2 o=y

Tmax(C) < | 75 | (5)

| Tkk | S Umin(A)

O'max(é)a

and from 1t

f? -
——————omax(C).
Vk(n—k+1)

Applying property 4, we obtain the first required bound:
2

S

Vi(n—k+1)

Finally, Chan-TI-sf(f k+1) is analyzed. If no permutations occur, from propo-
sition 5 the following condition is satisfied

Umin(Rll) Z

Omin(R11) > (M) .

k+1
7

If this expression is combined with the inequality (4), the following is ob-

tained:
Vk+1
f

| 7e41 k1 | < Omin(A)

O'min(g) Z| Th4+1,k+1 |Z Umax(c)a

/
vn—k
and from 1t

(n—Fk)(k+1)

f2 O'min(g) Z Umax(R22)~

10



Applying property 3, we obtain the second required bound:

n—K)(k+1)
f2

Uk+1(M) Z Umax(RZZ) .

QED.

3.3 Termination

The second step of our analysis is to prove that the algorithm halts. If no
permutations occur, the algorithm terminates with a unique iteration of the
main loop.

If there are permutations, however, the termination of the algorithm must be
demonstrated. The basic goal is to prove that | det(R11) | is a monotonically
increasing function during the execution of the algorithm. Since the value |
det(Ry1) | is unique for each different ordering of the columns of R, no two
orderings of the columns will be equal if | det(R11) | increases continuously.
Since a finite number of different orderings exist for the columns of R, the
algorithm must eventually terminate.

In each iteration of the algorithm, four calls are performed, say, Golub-I-
sf(f,k), Golub-I-sf(f k+1), Chan-TI-sf(f k), and Chan-II-sf(f k+1). Subalgorithms
Golub-I-sf(f k+1) and Chan-II-sf(f k) do not modify | det(R;;) |. However,
Golub-I-sf(f k) and Chan-TI-sf(f,k+1) do modify it. It must be proved that after
the execution of Golub-I-sf(f k) and Chan-TI-sf(f k+1), the value of | det(R11) |
is larger.

First, the consequences of Golub-I-sf(f k) in | det(R;1) | are analyzed. As-

sume that a permutation occurred. Then column j, k¥ < j < n, must be moved
to position k. The permutation can be performed in two steps:

1. Swap £+ 1 and j.

2. Swap k and k£ + 1.

The first step does not modify | det(Ry1) |, whereas the second step does.
Consider that the first step has been carried out, and focus on the second step.

Let R be the triangular matrix before the permutation, and let Ry, be the
k x k upper left block of R. Let R the triangular matrix after the permutation
has been applied, and let Rq1 be the k& x & upper left block of R. Since we must
demonstrate that the determinant is always increasing, it is sufficient to prove

that | det(Rq1) | >| det(Ri1) |-

11



Consider that the matrix before the permutation has the following structure:

r @ r x x
x r x x
R= a f x 1
Y ...z ka1
x

Then, | det(Ry1) |=| pa |, where p is the product of the first k — 1 diagonal
elements. Now columns & and &k + 1 are permuted and the matrix is retriangu-
larized. Since there has been is a permutation, | « | < f1/8? + 72.

After the permutation and retriangularization, the matrix has the following
structure:

9 P i

. k+1
.
where \/z7 + #3 =| o | . The value of | det(Ry;) | is
[det(Run) | = /477 510 12k = 2 g 2] den(Ra) |

and therefore the desired conclusion is reached:
| det(RH) |>| det(RH) | .

Next, the consequences of Chan-II-sf(f k+1) in | det(R11) | are analyzed.
Assume that a permutation occured. Then column j must be moved to position
k + 1. The permutation can be performed in two steps:

1. Swap j and k.
2. Swap k and k£ + 1.

The first step does not change | det(Ry1) |, whereas the second step may
modify | det(R11) |. Consider that the first step has been carried out and focus
on the second step.

12



Let R be the triangular matrix before the permutation, and let R;; be
the k x k upper left block of R. Let R be the triangular matrix after the
permutation, and let Rj; be the & x k upper left block of R. Since we must
prove that the value of the determinant always increases, 1t is sufficient to prove
that | det(Rq1) | >| det(Ri1) |-

Consider that the matrix before the permutation has the following structure:

R= a f x 1
Y ...z ka1
x

Then, | det(R11) |=| ga |, where ¢ is the product of the first £ — 1 diagonal
elements.

Now columns k and & + 1 of the matrix must be permuted and the matrix
retriangularized. Since a permutation has occured, then

] [}
|7 1> omin(R(L:k+ 1, 1: k+ 1)) f+ .

After the permutation and the retriangularization, the matrix has the fol-
lowing structure:

(6)

9 P i

k+1

where \/z? + 22 =| a |. The new value of | det(Ry1) | is

| det(Ri1) [=] gV B?+7% | .

After the application of Chan-II-sf(f k+1), the following condition is satis-
fied:
k41

f

| 22 | < omin(R(L:k+ 1, 1:k+ 1)) (7)

13



Combining the inequalities (6) and (7) and since omin(R(1:k+1,1: k+1)) =
omin(R(1:k+1,1:k 4+ 1)), it is obtained that

[y > |

Assume that the retriangularization is carried out by means of a Givens

rotation. Then
( . ) ( ; ) ( N )
c )

—s 04 0

c s a\ [

-5 ¢ 0 /) \xzs )~
If ¢ and s are isolated from the first two equations and their expressions are
substituted in the fourth equation, then

and

Zp+ 2y =0,
o o
which is equivalent to
zo0 + x1y = 0.
Applying some of the properties of the modulus | - | to the preceding ex-
pression, we obtain
|z2B | = [z17]
lz2 |18 = lally]-
Since | v |>| x2 |, then | @2 || # |>] #1 || 22 |, and we obtain from this
expression that
| B>z ] .

Thus,

|det(Ri1) | = |qV/B*+7%]
| g\/ i + 23 |

> |al.

\%

Therefore, the required result is obtained:
| det(RH) |>| det(RH) | .

QED.
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4 Concluding Remarks

In this paper we presented a new algorithm for computing the rank-revealing
QR factorization (RRQR) of triangular matrices. Chandrasekaran and Ipsen’s
algorithm has a termination problem with some matrix types and sizes. To solve
this problem, these authors proposed a method that was not included in their
theoretical studies. Hence, the effect of this change on the algorithm bounds is
unknown. In contrast, we solve the termination problem with a method first
suggested by Pan and Tang that has been fully included in our new theoretical
study. In addition, the new algorithm is faster because

e Subalgorithm Chan-II, with a quadratic cost on the rank, is used instead
of Stewart-11, with a cubic cost.

e The main structure of the algorithm has been modified in order to allow
a faster convergence rate.

We also theoretically analyze the new algorithm to prove that it halts and
achieves the desired bounds.

Experimental study has shown that the new implementation runs between 2
times (for low-rank matrices) and 40 times (for high-rank matrices) faster than
Chandrasekaran and Ipsen’s algorithm on 200 x 200 matrices. We expect that
this factor will grow higher for larger matrices.

Because of the advantages of the new algorithm, it has been used by Bischof
and Quintana [8] to develop a new block algorithm for computing the RRQR
factorization. This block algorithm has shown a much higher performance than
the traditional QR factorization with column pivoting. In an experimental study
carried out on several different platforms (including an IBM RS/6000-370, DEC
AXP 6000-300, HP 9000/715, SUN hypersparc, and SGI R8000), the new block
algorithm based on our method has been about two to three times faster than
QR factorization with column pivoting.
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